Design and Integration of Heat Pump and Solar Thermal Technologies in NZEBs

Justin Tamasauskas
Research Engineer, Buildings Group, CanmetENERGY-Varennes
IEA HPP Annex 40 Workshop
May 12th, 2014, Montreal
Solar HP in NZEB Design

- Solar + Heat Pumps attractive solution in NZEB design
 - High renewable energy fractions
 - Flexibility in system design
 - Improved heat pump performance

- Challenges
 - Storage capacity
 - Collector performance
 - Cost
Ice Slurry Heat Pump: Concept

- Solar HP concept by CanmetENERGY-Varennes
 - Ice slurry storage with HP and solar thermal

- Objective
 - Energy efficient and cost effective system integration

- Approach
 - Simulation: Energy Analysis
 - Operation: Test bench
 - Optimization: Techno-economic analysis
 - Transfer: Demonstrate and transfer technology
Ice Slurry Heat Pump: Concept

- Ice slurry storage
 - High latent heat capacity
 - Stable source temperature for HP
 - Improved solar collector performance
Ice Slurry Heat Pump: Concept

- Ice slurry integration with HP and solar thermal (Heating mode)
Ice Slurry Heat Pump: Concept

- Promising initial results
 - 86% reduction in heating operating energy use (Montreal)

Case 1- Electrical Heaters

Case 2- Solar Assisted Heat Pump with Sensible Storage

Case 3- Optimized Solar Assisted Heat Pump with Ice Storage
Ice Slurry Heat Pump: Test Bench

- Objectives
 - Demonstrate and validate concept
 - Develop understanding of system operations
 - Identify areas for system improvement
Ice Slurry Heat Pump: Economics

- Identify areas for cost reductions
- Sizing and economic comparison to common HP systems
- Apply optimization techniques to determine cost effective system sizing
 - Solar collector type and size
 - Ice tank size
 - Distribution tank size
Ice Slurry Heat Pump: Future Work

- Heat pump + thermal storage
 - Grid interaction
 - Advanced control strategies

- Enhanced understanding of system operations
 - Additional climate regions
 - Different building types
 - Integration of performance characteristics from test bench

- System improvement
 - Cost reductions
 - Robust design
Ice Slurry Heat Pump: Vision

- Market research
 - Address barriers to implementation and adoption

- Systematic development and refinement
 - Next generation test bench
 - Demonstration projects
 - Technology transfer of developed HP package
Conclusions

- Heat pumps an important component in NZEB design
 - Efficient integration of renewables into built environment

- Solar + Heat Pump systems offer energy savings potential
 - Key challenges must be overcome

- Innovative ice slurry solar heat pump concept
 - Promising energy savings across Canada
 - Extensive work to enhance system understanding
Questions?